distributive lattice - définition. Qu'est-ce que distributive lattice
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est distributive lattice - définition


Distributive lattice         
  • Free distributive lattices on zero, one, two, and three generators. The elements labeled "0" and "1" are the empty join and meet, and the element labeled "majority" is (''x'' ∧ ''y'') ∨ (''x'' ∧ ''z'') ∨ (''y'' ∧ ''z'') = (''x'' ∨ ''y'') ∧ (''x'' ∨ ''z'') ∧ (''y'' ∨ ''z'').
  • Distributive lattice which contains N5 (solid lines, left) and M3 (right) as sub''set'', but not as sub''lattice''
  • [[Young's lattice]]
LATTICE IN WHICH THE OPERATIONS OF JOIN AND MEET DISTRIBUTE OVER EACH OTHER
Distribute lattice; Distributive lattice/Proofs; Free distributive lattice
In mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection.
distributive lattice         
  • Free distributive lattices on zero, one, two, and three generators. The elements labeled "0" and "1" are the empty join and meet, and the element labeled "majority" is (''x'' ∧ ''y'') ∨ (''x'' ∧ ''z'') ∨ (''y'' ∧ ''z'') = (''x'' ∨ ''y'') ∧ (''x'' ∨ ''z'') ∧ (''y'' ∨ ''z'').
  • Distributive lattice which contains N5 (solid lines, left) and M3 (right) as sub''set'', but not as sub''lattice''
  • [[Young's lattice]]
LATTICE IN WHICH THE OPERATIONS OF JOIN AND MEET DISTRIBUTE OVER EACH OTHER
Distribute lattice; Distributive lattice/Proofs; Free distributive lattice
<theory> A lattice for which the least upper bound (lub) and greatest lower bound (glb) operators distribute over one another so that a lub (b glb c) == (a lub c) glb (a lub b) and vice versa. ("lub" and "glb" are written in LateX as sqcup and sqcap). (1998-11-09)
Duality theory for distributive lattices         
In mathematics, duality theory for distributive lattices provides three different (but closely related) representations of bounded distributive lattices via Priestley spaces, spectral spaces, and pairwise Stone spaces. This duality, which is originally also due to Marshall H.